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ABSTRACT 

The primary research objective is to investigate the control of flexible space 

structures—mobile satellite communication systems in particular. Solar-powered 

satellites require a high level of accuracy in attitude stabilization and large-angle 

maneuvering. Furthermore, they have to be least sensitive to disturbances affecting the 

structure, possibly coming from several sources, such as mechanical vibrations due to 

flexible panels appended to the spacecraft. In this thesis, we address the problem of 

robust adaptive disturbance rejection in a control system of a flexible structure. The intent 

is to guarantee stability and maximum rejection of the disturbances. For the achievement 

of this purpose, a Linear Quadratic Gaussian (LGQ) controller is designed using Loop 

Transfer Recovery (LTR) in order to increase the robustness of the system. A second 

approach is to design a nonminimum-phase structural filter and to examine its effect on 

the system’s stability.  
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EXECUTIVE SUMMARY 

The problem of controlling a rigid body with flexible appendages is presented in 

this thesis. Of particular application is the control of a satellite with solar panels and 

various structures and manipulators. The major problem is controlling these flexible 

appendages to achieve the best performance at minimal cost. The rejection of the overall 

disturbance is the main purpose of this thesis. 

The approach presented is based on the Linear Quadratic Gaussian (LQG) 

controller with the combination of the Loop Transfer Recovery method. This design is 

applied to a model by using the state space equations. The model consists of a rigid and a 

flexible mode characterized by pairs of conjugate poles on the imaginary axis. Using the 

Matlab Control toolbox, an LQR controller is simulated with feedback states estimated 

with a Kalman-Bucy filter. Application of the LTR method shows improved robustness 

in terms of stability margins.  

Another approach addressed in this thesis is the application of a structural filter. 

We show that in one specific example the performance of a nonminimum-phase all-pass 

filter can be more robust than the LQG/LTR design. The necessary phase shift is obtained 

by placing zeros in the right half s-plane. This theory is applied to a single input single 

output (SISO) system and it is compared with the LQG/LTR technique.   
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I. INTRODUCTION 

The problem of controlling systems with flexible structures is of interest in a 

number of applications. In particular, robotic systems with flexible, lightweight arms and 

space vehicles with flexible appendages are just a few examples. The challenge of this 

problem is the fact that the flexible dynamics add modes to the system, which at best 

degrade the performance and at worst make the system unstable. This is particularly true 

when the goal of the controller is to drive the system to follow rapid maneuvers, which 

excite the flexible modes. In this case, the excessive control activity excites vibrations, 

which can drive the closed loop system to instability. 

An example where this class of problem is important is in laser pointing devices 

deployed in space. This can be the case of laser communication systems or space 

weapons. The requirements for these applications in general are very stringent, in the 

sense that the accuracy of the pointing device has to be such as to induce very small 

tracking errors. This has to be maintained in the presence of a number of perturbations, 

especially vibrations from various actuators and flexible appendages.  

A number of approaches have been presented in the literature. The recent book 

[Preumont] provides a detailed account of the most important design architectures for a 

number of applications. The most classical approach is the use of notch filters, tuned at 

the frequencies of the flexible modes. The goal of this approach is to attenuate the 

flexible modes in the feedback loop so to prevent self excitation. What is interesting 

about this approach is that a nonminimum phase design seems to yield best performances, 

since the extra phase added by the right hand side zero causes a phase shift, which helps 

to stability of the system. This has been proposed by [Wie] and tested on as simple 

example. More modern approaches are based on standard state space techniques such as 

LQR and LQG [Savant]. These controllers perform very satisfactorily and they have a 

good degree of gain and phase margins. 

 

 



 2

The problem with the state space approach is that it is sensitive to knowledge of 

the frequencies of the flexibilities. This constitutes a major obstacle in space applications, 

since the system cannot be fully tested on the ground and has to be tuned in space. Also, 

another issue is the fact that the frequencies of the flexible modes vary widely with 

operating conditions and an exact knowledge is almost impossible. 

The goal of this thesis is to address the problem of designing a controller for a 

flexible system which is robust in the presence of mode uncertainties of the system. The 

proposed methods are supposed to be developed in conjunction with the frequency 

estimation of [Tzellos] so that the system can be tuned in an adaptive fashion. The 

particular methodology is to design an LQG controller with a Loop Transfer Recovery so 

to improve its gain and phase margins. It is well known that the addition of a Kalman 

Filter as a state observer greatly affects the stability margins of a LQR state feedback 

controller. However, even using the estimated state rather than the actual state, 

satisfactory margins can be obtained by adding an additional noise covariance matrix at 

the input of the system. This not only improves stability but it seems also to improve the 

robustness of the system when the flexible modes are uncertain. This technique has been 

compared with structural notch filters mentioned previously and they both give 

comparable results. However, what makes the two techniques (notch filters and state 

space) different is the fact that the notch filter requires tuning which is hard to be 

automated, while the state space LQG approach comes directly from the solution of a 

Riccati equation, easy to implement on line. 

This thesis is divided into the following chapters. Chapter II develops some of the 

basic concepts of control theory related to this research. Moreover, we introduce the 

dynamic model used in this thesis and we develop the equations that describe a flexible 

structure and the state space models. Chapter III is an overview of LQR design where we 

examine the application of a LQR controller to the thesis model and its robustness for 

several values of the nominal frequency of the flexible modes. In Chapter IV, we develop 

the LQG/LTR design and we examine the performance of this design on the same model. 

Also, we examine the LQG/LTR controller’s behavior as we perturb the flexible mode 

frequency. In Chapter V, we introduce the concept of the non-minimum phase structural 
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filter and we examine the stability margins for a specific example. In particular, we 

compare the robustness of the LQG/LTR controller with that of the structural filter for the 

same example. A summary of results and recommendations are presented in the last 

chapter.    
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II. MODELING FOR CONTROL OF FLEXIBLE STRUCTURES 

In this chapter, we address some of the basic concepts of control theory applied to 

flexible structures. In particular, we present the general equations that describe a flexible 

structure, the state space models and the requirements for stability.   

A. FLEXIBLE STRUCTURE 

In this section, we address the problem of modeling a flexible structure. Since the 

goal is to determine a simple mathematical model that can be used for control design, we 

need to make a number of assumptions and capture the dominant behavior. Based on 

these assumptions, a general equation that can describe a flexible structure is  

 uLx Ax Bx Z h+ + = , (1.1) 

where the vector x represents the angular rotation of an element and the vector h  

expresses the force or the torque of an actuator. The matrices L , A , B , uZ are positive –

semi-definite and describe the mass, stiffness, and damping coefficients as well as the 

force influencing system. These coefficients are approximately known and one approach 

to define them is by using the Rayleigh damping assumption: 

 A mL nB= + , (1.2) 

where the m , n  coefficients are chosen for the specific model.  

The second order differential equation can be transformed into modal coordinates 

by setting x η= Φ  to become 

 22 T
uJ Z hη η η+ Ω +Ω = Φ , (1.3) 

where η  is a modal vector,Φ  and Ω contain the structural modes and  the natural 

frequencies respectively.  

The state space form of equation (1.3) is defined below by setting x
η

η
Ω⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, 

which yields 

 x Mx Nh= + , (1.4) 
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where 
0

2
M

Ω⎛ ⎞
= ⎜ ⎟−Ω − Ω⎝ ⎠

 and 
0

T
u

N
Z
⎛ ⎞

= ⎜ ⎟
Φ⎝ ⎠

. 

The measurements can be defined by the vector y , which is related to the state as 

is shown in equation (1.5). 

 y Gx Fh= + , (1.5) 

where G  is the output matrix and F  a  feed-through matrix. [Preumont]. 

After defining the general mathematical model for a flexible structure, we want to 

see how the flexible modes affect the s-plane characteristics of the model. In most cases, 

the flexibility modes appear to have pairs of conjugate poles near the imaginary axis 

since they correspond to lightly damped vibrations. If not properly taken into account, 

these modes could make the closed loop system unstable or at least have undesirable 

behavior. Of course, another set of parameters that we have to take into account is the 

zeros that are placed on the imaginary axis. In particular, an imaginary zero placed near 

an imaginary pole can provoke a phase uncertainty for the system’s Open Loop Transfer 

Function (OPLTF) around the frequencies between the zero-pole pair. This situation is 

known as pole-zero flipping and depends on the relation between the sensor and the 

actuator. For a collocated structure, where the actuator and the sensor make both the rigid 

and the flexible mode to co-act stably, the pole-zero flipping situations cannot occur. On 

the other hand, for a non-collocated structure, where there are some flexible modes that 

do not co-act with the rigid mode stably, there is a high possibility of pole-zero flipping. 

There are some basic design approaches to achieve stability while considering 

cost minimization. For minimal control effort optimal control theory proposes that poles 

that are placed on the RHP should be reflected on the stability region to reduce the 

control energy. It is desirable to least affect any LHP pole, apart from the ones closed to 

the imaginary axis.  Also the designer has to consider that moving the RHP poles into the 

LHP affects the system’s bandwidth and its sensitivity to noise. [Savant-Preumont-Wie]. 

A typical pole-zero configuration of a flexible system is indicated in Figure 1. 
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Figure 1.   Pole-zero map of a flexible mode. 

 

B. STATE SPACE MODELING 

A state space model decomposes nth-order differential equations into n first-order 

differential equations. In particular, let ( )x t  be the state at time t ; then a system can be 

represented as indicated in Figure 2. 

 
Figure 2.   State Space Model. [Hespanha]. 

 

( , )y k x u=
( , , )x h x u t=  
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The vectors x ,u , y  correspond to the state, input and output vectors respectively. 

The function h  relates the first derivative of the state vector with the state vector itself 

and the input vector, and the function k  relates the output vector with the input and state 

vector. In the case of a linear time invariant Single Input Single Output (SISO) system, 

the state space model has the following form: 

 x Ax Bu= +  (1.6) 
 y Cx Du= + , (1.7) 

where x  is the state vector, u  is the input vector and y  is the output vector. A  is the 

system matrix, B  the input matrix, C  the output matrix and D  is a feed-through matrix. 

The D  matrix is usually set to zero since there is always a reaction time between input 

and output. 

The system’s transfer function can be determined by applying the Laplace 

transform on equations (1.6), (1.7). Assuming there are no feed-though terms, i.e., 0D = , 

we obtain: 

 

 ( ) (0) ( ) ( )sX s x AX s BU s− = +  (1.8) 
 ( ) ( )Y s CX s= . (1.9) 
 
Setting the initial conditions to zero (0) 0x =  
 1( ) ( ) ( )X s sI A BU s−= −  (1.10) 

and combining with the output equation we obtain 

 1( ) ( ) ( )Y s C sI A BU s−= − . (1.11) 

This yields the transfer function 

 1( ) ( )H s C sI A B−= − . (1.12) 

The model that is used in this thesis is a SISO system representing the behavior of 

a flexible space structure. In particular, it consists of a rigid and a flexible body 

connected in series as indicated in Figure 3. 
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Figure 3.   Model representation. 

 

If we separate the state into the rigid and the flexibility components, we obtain the 

two state-space models: 

 R R R R Rx A x B u= +  (1.13) 
 R R Ry C x=  (1.14) 

and 

 F F F F Fx A x B u= +  (1.15) 
 F F Fy C x= . (1.16) 
 
In a cascade model the input of the flexible mode is the output of the rigid mode, so 

R Fy u= . 
 

Let R

F

x
x

x
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 then the overall state space model is obtained as 

 RR R

F R F F

xA O B
x u

B C A x O
⎛ ⎞⎛ ⎞ ⎛ ⎞

= +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 (1.17) 

 )( R
F

F

x
y OC

x
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, (1.18) 

where O  is a zero matrix, RA and FA are the state matrices, RB  and FB  are the input 

matrices, RC  and FC are the output matrices of the rigid and flexible modes respectively.  

The transfer function of the system is 

 1( ) ( )s s sH s C sI A B−= − , (1.19) 

where R
s

F R F

A O
A

B C A
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, R
s

B
B

O
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, )(s FC OC= and I is the identity matrix. 

Rigid 
body 

Flexible 
body 

u Ry
 
y 
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The example used in this thesis is described by the equations (1.13)-(1.18) by 

setting
0 0
1 0RA ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, )(10RB =  and )(01RC =  for the rigid body mode and 

 
0        -0.6638    0           -0.3120
1.00    0              0            0
0         0.50         0            0
0         0              0.25       0

FA

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

,

0.0625
    0
    0
    0

FB

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

and ( )0 -0.0560 0 -0.0640FC =   

for the flexible mode. 
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III. STATE FEEDBACK / LINEAR QUADRATIC REGULATOR 

In this chapter, we recall control design techniques based on state feedback theory 

and the Linear Quadratic Regulator (LQR). We begin by identifying the phase (PM) and 

gain (GM) margins of the LQR approach and follow up by experimenting with the 

system’s robustness.  

A. STABILITY 

A fundamental objective in control system design is the stability of the system. By 

the Nyquist criterion we can assess closed loop stability. In particular the number of RHP 

poles of the Closed Loop Transfer (CLTF) is equal to the sum of the number of the 

clockwise encirclements of the -1 point on the s-plane and the number of RHP poles of 

the OPLTF. 

B. OPTIMIZATION / LINEAR QUADRATIC (LQR) REGULATOR 

By the process of optimization, we design a control system by minimizing a cost 

function, J , which can be described by the equation (2.1). 

 ( , , )J L x u t dt= ∫ , (1.20) 

where the state vector x  is related to the input vector u  by a first order differential 

equation   

 ( , , )x f x u t= . (1.21) 

A well-known result is that we minimize the cost function J  by the LQR. Let the 

state space model be: 

 s sx A x B u= +  (1.22) 
 sy C x=  (1.23) 
and the cost function to be minimized  
 
 ( )T TJ x Qx u Ru dt= +∫ , (1.24) 

where Q  is a positive semi-definite matrix known as the state weighting matrix and R  is  
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a positive definite matrix known as control weighting matrix. These matrices are selected 

by the designer and have a deterministic role in finding the optimal gain for the LQR 

problem.  

The solution to this problem is a gain matrix, L , that is calculated from the 

equation 

 1 TL R B W−= , (1.25) 

where W satisfies the Algebraic Riccati Equation 

 1 0T TWA A W WBR B W Q−+ − + = . (1.26) 

Finally the input u  of the control system has the form of:  

 u Lx r= − +  (1.27) 

with r being an external command signal. 

Figure 4 shows the block diagram of the state feedback LQR for the model in this 

thesis.  

 
Figure 4.   Linear Quadratic Regulator Block Diagram. 

 

The OPTLT of this system can be determined as in the state space model 

presentation and is: 

 1( ) ( )s sH s L sI A B−= − . (1.28) 

The LQR approach is commonly used for designing state feedback controllers 

because of its ability to guarantee robust stability even in the presence of model 

uncertainties. This is because the LQR has a PM 060〉 and an infinite GM, thus 

Rigid body 

L 

Flexible 
body 

 
y 

U
u 

Σ

Ry y 
U
r 
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guaranteeing robustness of the system in the presence of perturbations. However, a major 

drawback of this design is that the LQR needs the feedback state vector to be available, 

which, in many real time applications, is not feasible. [Preumont]. 

The LQR properties can be verified from the model of this thesis. More 

specifically, if we use the example of page (6) then the model shows a PM of 062  and an 

infinite GM as indicated in Figure 5. 
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Figure 5.   Bode plot of OPLTF of the LQR design in the nominal frequency 

 

As mentioned earlier, the computation of the gain matrix L  requires the solution 

of the Algebraic Riccati Equation, which depends on the R  and Q  matrices. For this 

thesis these two matrices have been selected to be  

1R =  and T
s sQ C C= . 

The system is stable and Figure 6 shows the impulse response of the CLTF, 

which, as expected, decays to zero. 
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Figure 6.   Impulse Response of the LQR CLTF.   

 

C. ROBUSTNESS / STABILITY OF LQR DESIGN 

In this section, we examine the ability of the LQR approach to retain the model’s 

stability in the presence of perturbations. In particular, we show how the increase of the 

frequency in the flexible mode affects the PM and the GM of the system and how the 

system responds to these changes. In order to compare the different cases we used a 

number of plots in which the frequency flexibility mode varies between within 5%, 10% 

and 20%, respectively, as shown in Figures 7, 8, and 9.  
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Table 1 shows the stability margin variations in connection with the percent 

perturbation of the flexibility’s nominal frequency. 

 

LQR Controller 

% increment in 

the nominal 

frequency 

5 10 15 30 

PM (degrees) 61.2 51.3  50.4 48 

GM (dB) ∞  ∞  ∞  ∞  

Gain Cross Over 

frequency (Hz) 

0.3104 0.312 0.3187 0.3375 

Phase Cross Over 

frequency (Hz) 

∞  ∞  ∞  ∞  

Table 1.   LQR performance 

In all cases, we notice that there is sufficient margin (phase and gain) to ensure 

closed loop stability in the presence of model uncertainties.  
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IV. LINEAR QUADRATIC GAUSSIAN / LOOP TRANSFER 
RECOVERY DESIGN (LQG/LTR)  

This chapter analyzes the Linear Quadratic Gaussian and Loop Transfer Recovery 

design (LQG/ LTR) and its performance. Moreover, we present the LQG control design 

and we examine its stability in the presence of flexible modes. Also, we introduce the 

Loop Transfer Recovery (LTR) method and its performance at the stability margins of 

the LQG controller.   

A. LINEAR QUADRATIC GAUSSIAN (LQG) 

In most applications, the state vector is not available since this would require an 

excessive number of sensors. Thus, the feedback states have to be estimated. This leads 

to the LQG controller, which consists of an LQR controller and a Kalman-Bucy filter for 

the state feedback estimation.  

Consider the linear time invariant system: 

 x Ax Bu w= + +  (2.1) 
 y Cx v= + , (2.2) 

where w  and v  are the process and the measurement noise respectively. It is convenient 

to assume that these noises are Gaussian, white with zero mean. The optimal gain matrix 

of the filter can be computed by the following equation: 

 1TK NC R−= , (2.3) 

where the matrix N  is the solution of the algebraic Riccati equation: 

 1
0 0 0T TAN NA NCR C N Q−+ − + = . (2.4) 

The matrices 0R  0Q  are known as the covariance matrices and they refer to the 

noise parameters of the system. They are usually provided by the designer and they 

model the noise intensity level. Since they are covariance matrices, 0R  0Q  have to be 

positive definite and positive semi-definite, respectively, for the Riccati Equation to be 

solvable. [Savant].  
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In order to analyze the robustness of the LQG design we need to look at the open 

loop dynamics and its stability margins. Of particular interest, is the open loop frequency 

response we obtain by breaking the loop at the point X as illustrated in Figure 10. 

 

 
Figure 10.   Linear Quadratic Gaussian Block Diagram. 

 

From the state space model of the system we obtain 

 s sx A x B u w= + +  (2.5) 
 sy C x v= + . (2.6) 

The Kalman-Bucy filter and the control input combined yield 

 ( )ˆ ˆ ˆ ˆs s sx A x B u K y C x BLx= + + − −  (2.7) 
 ˆ ˆu Lx= − . (2.8) 

If we set 
ˆs

x
x

x
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 then the overall system’s state space equations can be written as 

indicated below:  

 
ˆ

s s
s

s s s s

xA O B
x u

KC A KC B L Ox
⎛ ⎞⎛ ⎞ ⎛ ⎞

= +⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠
 (2.9) 

 )(ˆ
ˆ
x

u O L
x

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. (2.10) 

Finally, the OPLTF between u and û  in Figure 10 can be computed from 

equation (3.11) 

Rigid body 

L

Flexible body 

u Ry y 

Kalman-Bucy 

filter 

x̂

Σ

û
v 

w
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 1 1( ) ( ) ( )s s s s s sH s L sI A B L KC KC sI A B− −= − + + − . (2.11) 

Once more, if we apply the LQG design in the example that we described in 

Section I, p. 6, we can see that the system is stable and the impulse response of the CLTF 

decays to zero, as illustrated in Figure 11. 
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Figure 11.   Impulse response of the LQG CLTF.  

 

However, the PM and the GM of the system have decreased considerably. In fact, 

the PM became 030  and the GM equal to 1.88 db as we can see from Figure 12. This 

means that the sensitivity of the LQG design in the noise parameters has increased and 

there is a possibility of losing the stability of the system.   
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Figure 12.   Bode plot of OPLTF of the LQG design. 
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Indeed, if the gain matrices L  and K  remain constant and the flexibility mode 

frequency is increased by 5%, then the system can become unstable. This is shown in 

Figure 13 and Figure 14, where the CLTF and the Bode plot OPLTF of the system are 

indicated. 
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Figure 13.   Impulse response of the CLTF of the LQG design in the presence of 5% 

increment in the frequency of the flexible mode. 
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Figure 14.   Bode plot of the OPLTF of the LQG design in the presence of 5% 

increment of the flexible mode frequency. 

 

B. LOOP TRANSFER RECOVERY 

As mentioned in Chapter II, the LQR procedure guarantees a PM of 60 degrees 

and an infinite GM. In spite of the excellent stability, the LQR is not a viable solution to 

the control problem because it requires that all states are available. The use of a Kalman 

filter to predict the system’s states was a good solution to this problem but had as an 

impact the loss of LQR properties. Doyle and Stein [Savant] developed a method that, 

under specific conditions, ensures that the LQG shows approximately the same behavior 

as the LQR.  
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The Loop Transfer Recovery (LTR) is based on the configuration of the LQG 

design. More specifically, the noise covariance matrices 0R  0Q  can play a deterministic 

role in the LTR procedure. Recall that the OPLTF of the LQR and LQG respectively are 

given by: 

 1( ) ( )LQR s sH s L sI A B−= −  (2.12) 

 1 1( ) ( ) ( )LQG s s s s s sH s L sI A B L KC KC sI A B− −= − + + − . (2.13) 

It can be proved that when the system has no zeros in the RHP and the noise 

covariance matrices are chosen to be 0 1R =  and 2
0Q g BB′=  the LQG converges to the 

LQR as  

 lim ( ) ( )LQG LQRg
H s H s

→∞
= , (2.14) 

where g  is a scalar arbitrary variable. As a consequence, the LTR method guarantees 

that as the process noise is increased, the LQG recovers the LQR robustness properties. 

Of course, for 0g =  the KBF has the nominal value for the true noise intensities. As g  

increases, the filter efficiency is getting smaller but the PM and the GM is improved 

providing a response less sensitive to modeling errors. [Savant]. 

This statement can be verified from Table 2, where the reader can see that margin 

stabilities are increasing and that the LQG/LTR method satisfies the convergence 

criterion. The matrix values came from the application of the LQG/LTR design in the 

example of Chapter I, p. 6. 
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LQG / LTR Controller 

increment in the 

scalar g 

10 100 1000 10,000 

PM (degrees) 34.58  40.5371 45.8733 51.2310 

GM (dB) 1.98 2.6967 4.2328 6.4818 

Gain Cross Over 

frequency (Hz) 

0.2130 0.3609 0.7336 0.7572 

Phase Cross Over 

frequency (Hz) 

0.1102 0.2722 0.2789 0.2834 

Table 2.   Performance of LQG / LTR controller as the process noise increases. 

 

This convergence can be seen by comparing the Bode plots of the OPLTF of the 

LQR and the OPLTF of the LQG/LTR controllers on the same example. 
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Figure 15.   Bode plots of OPLTF of the LQR and the LQG/LTR controllers for g=10.  
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Bode Diagram of the OPLTF of the LQR and LQG/LTR controllers for g=100
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Figure 16.   Bode plots of OPLTF of the LQR and the LQG/LTR controllers for 

g=100.  
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Figure 17.   Bode plots of OPLTF of the LQR and the LQG/LTR controllers for 

g=1000.  
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Bode Diagram of the OPLTF of the LQR and LQG/LTR controllers for g=10,000
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Figure 18.   Bode plots of OPLTF of the LQR and the LQG/LTR controllers for 

g=10,000.  

 

From Figures 15-18, we can see that as the process noise is increased, the 

LQG/LTR converges to the LQR plot in magnitude and phase. 

Another issue that has to be examined is the robustness of this method. Having 

calculated the Kalman filter gain matrices Κ  for every variation of the scalar g , as 

indicated in Table 3, the model is tested for its stability every time the perturbation 

frequency is increased.  
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Kalman-Bucy filter gain matrices 

 increment in 

the scalar g 

1 10 100 1000 10,000 

Gain matrix K -1.0000 
-13.833 
0.0624 
0.1300 
-1.4937 
-3.2701 

-10.000 
-67.607 
-0.3357 
-4.9828 
-11.608 
-5.6335 

 

-100.0000 
-339.3195 
-17.2514 
-29.3866 
-17.7253 
1.0111 

1.0e+003* 
[-1.0000     
-1.8830      
-0.0943      
-0.0644      
-0.0149      
0.0044] 

 

1.0e+004* 
[-1.0000     
-1.0672     
-0.0341     
-0.0117     
-0.0012     
0.0005] 

 

Table 3.   Variation of Kalman-Bucy filter gain matrices with the process noise 
increment.  

Also, Table 3 shows that the drawback of the LTR is an increase in the gain 

matrix K, thus increasing the sensitivity to measurement noise. 

In Figure 19, we show the Nyquist plots of the LQG/LTR controller OPLTF for 

several values of the parameter g  at the nominal frequency. It can be seen that none of 

the plots crosses the -1 point, thus guaranteeing closed loop stability.  
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Figure 19.   Nyquist plot of the OPLTF at the nominal frequency for several values of 

g. 
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As the nominal frequency is increased, the plots tend to get closer to the -1 point. 

In Figure 20, we show the Nyquist plots of the OPLTF for 10% increment of the nominal 

frequency. The plot that corresponds to the OPLTF with 1g =  crosses the -1 point and 

provides instability into the system. 
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Figure 20.   Nyquist plot of the OPLTF at the presence of 10% increment of the 

nominal frequency for several values of g. 
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V. STRUCTURAL FILTER DESIGN 

In this chapter, we analyze the concept of a structural second order nonminimum-

phase filter and its performance on a model that has a pair of conjugate poles on the 

imaginary axis of the s-plane as shown in Figure 21. Also, the model is tested with the 

LQG/LTR method and a comparison between the results of these two is presented. 
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Figure 21.   Pole-Zero map of the OPLTF of the two-mass-spring example. 

 

A. NON MINIMUM PHASE STRUCTURE FILTER 

The concept of the nonminimun-phase structural filter is a particular case of the 

common notch filter that is characterized by a specific property. First of all, it is a second 

order filter with transfer function described as follows:  

 
2 2

2 2

/ 2 / 1( )
/ 2 / 1

z z z

p p p

s sH s
s s

ω ζ ω
ω ζ ω

+ +
=

+ +
. (2.15) 
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The terms zω , zζ , pζ and pω  define the filter’s coefficients and, for any variation 

of the above terms, there are shaped filters with specific frequency responses. So, it can 

be formatted as a band-pass, a low-pass, or a high-pass filter. Another basic property is 

that the zeros of the transfer function can be placed on the RHP. The purpose of this 

technique is to decrease the counteraction of the flexible modes by providing the suitable 

phase alteration into the system. [Wie]. 

To understand better the performance of the structural filter, an example of two 

bodies that are connected by a spring with constant k  is described bellow. 

 
Figure 22.   Two mass spring system example. [Wie]. 

 

The masses of the two bodies and the constant k  are selected to be equal to 1.  On 

the first body, a force acts and this action is transferred to the second body through the 

spring. In this example, we measure only the position 2x  and its first derivative. The 

transfer function of this system is:  

 
2

1
2 2

2

( ) 1 ( )
( ) ( 2 )

x s s K
u s

x s s s K K
⎡ ⎤⎡ ⎤ +

= ⎢ ⎥⎢ ⎥ +⎣ ⎦ ⎣ ⎦
. (2.16) 

Also, for the rigid body, a proportional integral (PI) compensator is designed with 

the following transfer function: 

 ( ) 0.086( / 0.15 1)C s s= + . (2.17) 
 

k 
m1 m2 

x1 x2 

u 
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The interaction between the flexible and the rigid body drives the system to 

instability, as shown in Figure 23. 
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Figure 23.   Root locus of the two mass system spring OPLTF. 

 

In order to guarantee system’s stability, a nonminimum-phase all-pass structure 

filter is applied to provide a phase shift at the flexible body frequency. The basic 

characteristics of this filter are the system’s gain conservation and the flexibility mode’s 

phase delay. For the purpose of this analysis, the coefficients of this filter are set as:  

2z p Kω ω= =  and 0.5p zζ ζ= − =  

In Figure 24, we show the Bode plot of the nonminimum-phase all-pass filter, 

which presents an amplitude of 0 dB and a phase change from 360o  to 0o . The factor pζ  

assigns the slope of the phase plot, meaning that bigger pζ  corresponds to a smoother 

slope. [Wie]. 
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Figure 24.   Bode plot of the all-pass nonminimum phase structure filter. 

 

When we include the all-pass structural filter in the control, the system becomes 

stable with a PM of o37.75  and a GM of 1.86 dB, as indicated in Figure 25. 
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Figure 25.   Bode plot of the OPLTF of the two-mass-spring system. 

 

As a consequence, the impulse response of the CLTF, illustrated in Figure 26, 

shows rapidly decaying oscillations. 
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Figure 26.   Impulse response of the CLTF of the two-mass-spring system. 

 

B. COMPARISON OF THE LQG/LTR AND NONMINIMUM PHASE 
NOTCH FILTER DESIGNS 

Continuing the study of this model, an LQG/LTR controller is designed as it was 

done in Chapter III. The system appears to have better stability margins for different 

values of factor g, as indicated in Table 4.  
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Performance of the LQG / LTR controller for the two-mass-spring model 

Increment in the 

scalar g 

1 10 100 1000 

PM (degrees) 46.9541 52.5630 59.6880 63.5380 

GM (dB) 3.8842 3.1796 5.3836 10.041 

Gain Cross Over 

frequency (Hz) 

0.8709 0.9454 3.1718 6.1809 

Phase Cross Over 

frequency (Hz) 

0.2130 0.2900 1.5550 1.5846 

Table 4.   Performance of the LQG/LTR controller for the two-mass spring model. 

 

However, the nonminimum-phase all-pass structure filter seems to be more robust 

than the LQG/LTR controller. Indeed, as the flexibility mode frequency is increased, the 

system is driven to instability, as indicated in Figure 27. 
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Figure 27.   Impulse response of the CLTF of the two-mass spring system for 5% 

increment of the flexibility mode frequency with LQG/LTR. 

 

On the other hand, the notch filter meets the target of the optimal control, and this 

is indicated in Table 5, where the reader can see the stability margins as the flexibility 

mode frequency increases. 
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Notch Filter performance  

 Increment in the 

flexibility mode frequency 

10% 20% 30% 

PM (degrees) 38.5373 34.4075 21.9943 

GM (dB) 2.4401 3.0701 3.7549 

Gain Cross Over 

frequency (Hz) 

0.7989 0.7989 0.7989 

Phase Cross Over 

frequency (Hz) 

0.2781 1.7893 1.9183 

Table 5.   Notch filter performance for the two-mass spring system. 

 

In Figure 28, we show the Nyquist plots of the OPLTF of the nonminimum-phase 

structural filter design within 0 to 30 percent increment of the nominal frequency. It can 

be seen that none of the plots crosses the -1 point, thus guaranteeing closed loop stability. 

However, the stability margins of the OPLTF are becoming smaller as the frequency of 

the flexible mode is increased. 
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Figure 28.   Nyquist plots of the Notch filter system OPLTF for several values of the 

flexibility mode frequency. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

The main goal at this thesis is to develop an algorithm to reject perturbations 

caused by flexible modes in a control system. The main characteristic of the flexible 

mode is the existence of pairs of conjugate poles and zeros on the imaginary axis. LQR 

and LQG design, in conjunction with the LTR method, and, finally, an application of an 

all-pass structural filter at the feedback loop of the control system were used to guarantee 

the stability and the robustness of the system.  

As expected, the LQR design ensures satisfactory stability while requiring 

knowledge of the feedback states. On the other hand, the LQG design is more realistic 

since it uses states estimated by a Kalman-Bucy filter. Of course, the control system loses 

its previous stability margins and it becomes less robust to uncertainties in the knowledge 

of frequencies. By using the LTR method, we can recover part of the LQR stability 

margins. We have shown that as we increase the noise covariance matrix at the input of 

the system, the efficiency of the filter becomes poorer but the overall system became 

more robust. Results showed that the model could retain the closed loop stability in the 

presence of 10% increment of the flexible mode frequency. 

In the last chapter we addressed the concept of an all-pass nonminimum phase 

second-order structural filter and we studied its performance for a specific example. In 

particular, we designed an LQG/LTR controller for this example and we compared the 

results of these two approaches. We showed that the structural filter design is more robust 

than the LQG/LTR. More specifically, the structural filter design maintained the stability 

margins in desirable levels as the flexible mode frequency increased up to 30% in 

contrast to the LQG/LTR controller that became unstable in up to a 5% increment. 

In this thesis, we presented a different but an effective way of using the classical 

methods in rejecting the perturbations of flexible modes in a control system. 

Nonminimum phase structural filters can be very effective for stabilizing a control system 

if the designer understands how the system’s zero-pole pairs are interacting with each 

other and chooses the appropriate location on the RHP to place the zeros of the filter. 
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Furthermore, the research in this thesis is performed in conjunction with the thesis 

of K. Tzellos [Tzellos]. The latter investigates the estimation of the flexible modes 

frequencies which can be used in the proposed controller in an adaptive implementation. 

 In this thesis we concentrated our effort on a fixed gain system for control of 

flexible structures. The fixed gains can be periodically updated using estimates of the 

frequencies of the structure. A more advanced implementation would be a fully adaptive 

approach, where the gains of the controller are updated directly from output 

measurements. This would lead to an adaptive controller, available in the literature. 

Questions on convergence and robustness in actual applications will have to be 

addressed. 
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